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Abstract. Two recent developments of the nuclear shell model are presented. One is a breakthrough in
computational feasibility owing to the Monte Carlo Shell Model (MCSM). By the MCSM, the structure of
low-lying states can be studied with realistic interactions for a wide, nearly unlimited basically, variety of
nuclei. The magic numbers are the key concept of the shell model, and are shown to be different in exotic
nuclei from those of stable nuclei. Its novel origin and robustness will be discussed.

PACS. 21.60.Cs Shell model – 21.30.Fe Forces in hadronic systems and effective interactions – 13.75.Cs
Nucleon-nucleon interactions (including antinucleons, deuterons, etc.) – 21.10.-k Properties of nuclei; nu-
clear energy levels

1 Introduction

We present two recent developments in the nuclear shell
model. One is a drastic change of the feasibility of the shell
model calculations due to the Monte Carlo Shell Model.
We will discuss this point first by showing several exam-
ples. The other is more fundamental: new magic numbers
in exotic nuclei. In exotic nuclei far from the β-stability
line, some usual magic numbers disappear while new ones
arise. This is a very intriguing problem, and its mechanism
is related to basic properties of nucleon-nucleon interac-
tion in a very robust way. The second part of this report
is on this very exciting and newest development.

2 Monte Carlo Shell Model

2.1 Outlook

The nuclear shell model has been started by Mayer and
Jensen in 1949 [1] as a single-particle model. Afterwards,
many valence particles are treated in the shell model,
which then became a many-body theory or calculational
method. A good example can be found in the sd-shell [2].
The nuclear shell model has been successful in the de-
scription of various aspects of nuclear structure, partly
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because it is based upon a minimum number of natural
assumptions, and partly because all dynamical correla-
tions in the model space, beyond the mean-field calcu-
lations, can be incorporated appropriately. Although the
direct diagonalization of the Hamiltonian matrix in the
full valence-nucleon Hilbert space is desired, the dimen-
sion of such a space is too large in many cases, preventing
us from performing the full calculations. Indeed, the shell
model dimension is large, and the actual calculation be-
comes very difficult. By recent (conventional) shell model
codes like ANTOINE by Caurier [3], VECSSE by Sebe [4]
or MSHELL by Mizusaki [5], one can handle up to shell
model dimension ∼ 100 million at technical edge, while
practical calculations up to a few tens million dimension
can be done.

Although the conventional shell model calculation has
thus been developed significantly, the dimension can be
much larger in many real nuclei and is indeed much beyond
the reach of future development. For instance, certain un-
stable nuclei being studied require calculations with more
than 1 billion dimension. This is already very far beyond
the limit of the existing conventional shell model codes.

In order to overcome those difficulties, one has to intro-
duce an alternative approach. That is, stochastic methods
to many-body problems. We now turn to this subject.

The Shell Model Monte Carlo (SMMC) method has
been proposed first [6], but it turned out that the SMMC



152 The European Physical Journal A

is not very suitable for investigating level structure or
transitions between eigenstates, partly due to the so-called
minus-sign problem.

The Quantum Monte Carlo Diagonalization (QMCD)
method has been proposed several years later by Honma,
Mizusaki and myself [7]. In the QMCD method, we se-
lect only basis states important to the eigenstate to be
obtained. We then diagonalize the Hamiltonian matrix in
a good approximation with those important bases [8–11].
The application of the QMCD method to the nuclear shell
model is called the Monte Carlo Shell Model (MCSM).
There have been several publications already on such ap-
plications [12–17].

2.2 Features of MCSM

There are two major advantages in the MCSM calcula-
tions. The first one is the feasibility of including many
single-particle states. Because of this, one can describe
drastic excitations within a nucleus. For instance, one can
describe spherical yrast states, deformed rotational band
and nearly superdeformed band at the same time with the
same Hamiltonian in the same model space. This exam-
ple is shown in refs. [10,12,17], where those three kinds
of states are nicely presented by MCSM calculations with
the full pf -shell and the g9/2 orbit. One finds quite good
agreement with experiment [18]. This kind of description
over a wide variety of states may be characterized as the
feasibility along the energy axis.

The second major advantage of the MCSM calculation
is the feasibility of handling many valence particles. The
maximum number of valence particles is rather limited in
the conventional calculations. However, if one wants to
describe a long chain of isotopes entering the region of
exotic nuclei far from the β-stability line, the number of
particles should change significantly. So, this capability
plays an indispensable role in studying the structure of
such exotic nuclei. This feature can be characterized as
the feasibility along the isospin axis.

The second advantage is essential also in a recent work
for describing the spherical-deformed phase transition in
heavy nuclei, because the phase transition occurs as a
function of the valence nucleons [14].

In exotic nuclei, two major shells are mixed rather of-
ten, and states of various characters arise at low energy.
Even the ground state can be of quite exotic nature. In this
situation, the above two feasibilities combined together
play really crucial roles in clarifying the structure of ex-
otic nuclei far from the β-stability line. As an example,
we shall discuss the structure of nuclei in the vicinity of
32Mg in the next section.

3 Magic numbers of exotic nuclei

3.1 Motivation

The magic number is the most fundamental quantity gov-
erning the nuclear structure. The nuclear shell model has
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Fig. 1. Effective single-particle energies of neutrons of (a) O
isotopes for N = 8 to 20 and (b) N = 20 isotones for Z = 8
to 20.

been started by Mayer and Jensen by identifying the magic
numbers and their origin [1]. The study of nuclear struc-
ture has been advanced on the basis of the shell structure
associated with the magic numbers. This study, on the
other hand, has been made predominantly for stable nu-
clei, which are on or near the β-stability line in the nuclear
chart. This is basically because only those nuclei have been
accessible experimentally. In such stable nuclei, the magic
numbers suggested by Mayer and Jensen remain valid, and
the shell structure can be understood well in terms of the
harmonic-oscillator potential with a spin-orbit splitting.

Recently, studies on exotic nuclei far from the β-
stability line have started owing to the development of
radioactive nuclear beams. The magic numbers in such ex-
otic nuclei can be a quite intriguing issue. We shall show
that new magic numbers appear and some others disap-
pear in moving from stable to exotic nuclei in a rather
novel manner due to a particular part of the nucleon-
nucleon interaction.

3.2 Effective single-particle energies

In order to understand underlying single-particle proper-
ties of a nucleus, we can make use of effective (spherical)
single-particle energies (ESPEs), which represent mean ef-
fects from the other nucleons on a nucleon in a specified
single-particle orbit. The two-body matrix element of the
interaction depends on the angular momentum J , cou-
pled by two interacting nucleons in orbits j1 and j2. Since
we are investigating a mean effect, this J-dependence is
averaged out with a weight factor (2J + 1), and only di-
agonal matrix elements are taken. Keeping the isospin de-
pendence, T = 0 or 1, the so-called monopole Hamiltonian
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Fig. 2. Effective 1s1/2-0d3/2 gap in N = 16 isotones as a func-
tion of Z. Shell model Hamiltonians, SDPF, USD and “Kuo”
are used. See the text.

is thus obtained with a matrix element [19,13]:

V T
j1j2 =

∑
J(2J + 1)〈j1j2|V |j1j2〉JT∑

J(2J + 1)
, for T = 0, 1, (1)

where 〈j1j2|V |j′1j′2〉JT stands for the matrix element of a
two-body interaction, V .

The ESPE is evaluated from this monopole Hamilto-
nian as a measure of mean effects from the other nucle-
ons. The normal filling configuration is used. Note that,
because the J-dependence is taken away, only the number
of nucleons in each orbit matters. As a natural assump-
tion, the possible lowest isospin coupling is assumed for
protons and neutrons in the same orbit. The ESPE of an
occupied orbit is defined to be the separation energy of
this orbit with the opposite sign. Note that the separa-
tion energy implies the minimum energy needed to take
a nucleon out of this orbit. The ESPE of an unoccupied
orbit is defined to be the binding energy gain by putting
a proton or neutron into this orbit with the opposite sign.

3.3 Varying shell gaps

In fig. 1(a), ESPEs are shown for O isotopes. The Hamil-
tonian and the single-particle model space are the same
as those used in Utsuno et al. [13], where the structure of
exotic nuclei with N ∼ 20 has been successfully described
within a single framework.

A significant gap is found at N = 16 with the energy
gap between the 0d3/2 and 1s1/2 orbits equal to about
6 MeV. This is a quite large gap comparable to the gap
between the sd- and pf -shells in 40Ca. The neutron num-
ber N = 16 should show features characteristic of magic
numbers as pointed out by Ozawa et al. [20] for observed
binding energy systematics. A figure similar to fig. 1(a)
was shown by Brown [21] for the USD interaction [2],
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Fig. 3. ESPEs for (a) 30Si and (b) 24O, relative to 0d5/2.
(c) The major interaction producing the basic change between
(a) and (b). (d) The process relevant to the interaction in (c).

while only nuclei with subshell closures were taken. Basi-
cally because the 0d3/2 orbit has positive energy as seen in
fig. 1(a), O isotopes heavier than 24O are unbound for the
present Hamiltonian in agreement with experiments [22,
23], whereas the 0d3/2 orbit has negative energy for the
USD interaction [2,21].

One finds that the gap between the 0d3/2 and 1s1/2 or-
bits is basically constant within a variation of ∼ ±1 MeV.
In lighter O isotopes, valence neutrons occupy predomi-
nantly 0d5/2 and this gap does not make much sense to
the ground or low-lying states. The gap becomes relevant
to those states only for N > 14. Thus, the large 0d3/2-
1s1/2 gap exists for O isotopes in general, while it can
have major effects on the ground state for heavy O iso-
topes, providing us with a magic nucleus 24O at N = 16.

Figure 2 shows the effective 0d3/2-1s1/2 gap, i.e., the
difference between ESPEs of these orbits, in N = 16
isotones with Z = 8–20 for three interactions: “Kuo”
means a G-matrix interaction for the sd-shell calculated
by Kuo [24], and USD was obtained by adding empirical
modifications to “Kuo” [2]. The present shell model inter-
action is denoted SDPF hereafter, and its sd-shell part is
nothing but USD with small changes [13]. Steep decrease
of this gap is found in all cases, as Z departs from 8 to 14.
In other words, a magic structure can be formed around
Z = 8, but it should disappear quickly as Z deviates from
8 because the gap decreases very fast. The slope of this
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sharp drop is determined by V T=0,1
0d5/20d3/2

in eq. (1), where
the dominant contribution is from T = 0.

The gap can be calculated from the Woods-Saxon po-
tential. The resultant gap is rather flat, and is about half
of the SDPF value for Z = 8.

3.4 Shell structures of 30Si and 24O

We now discuss, in more detail, the sharp drop of the gap
indicated in fig. 2 for Z moving away from 8. This drop is
primarily due to the rapid decrease of the 0d3/2 ESPE for
neutrons. Figure 3 shows ESPEs for 30Si and 24O, both of
which have N = 16. Note that 30Si has six valence protons
in the sd shell on top of the Z = 8 core and is indeed a
stable nucleus, while 24O has no valence proton in the
usual shell model. In fig. 3, the neutron 0d3/2 and 1s1/2

are rather close to each other, while keeping certain gaps
from the other orbits. Thus, the 0d3/2-1s1/2 gap becomes
smaller as seen in fig. 3(a).

In fig. 3(b), ESPEs for an exotic nucleus, 24O are
shown. The 0d3/2 is lying much higher, very close to
the pf -shell. A considerable gap (∼ 4 MeV) is between
the 0d3/2 and the pf -shell for the stable nucleus 30Si,
whereas an even larger gap (∼ 6 MeV) is found be-
tween 0d3/2 and 1s1/2 for 24O. The basic mechanism of
this dramatic change is the strongly attractive interaction
shown schematically in fig. 3(c), where j> = l + 1/2 and
j< = l−1/2, with l being the orbital angular momentum.
In the present case, l = 2. One now should remember that
valence protons are added into the 0d5/2 orbit as Z in-
creases from 8 to 14. Due to a strong attraction between
a proton in 0d5/2 and a neutron in 0d3/2, as more protons
are put into 0d5/2, a neutron in 0d3/2 is more strongly
bound. Thus, the 0d3/2 ESPE for neutrons is so low in
30Si as compared to that in 24O.

3.5 Spin-isospin dependence in NN interaction

The process illustrated in fig. 3(d) produces the attractive
interaction in fig. 3(c). The NN interaction in this process
is written as

Vτσ = τ · τ σ · σ fτσ(r). (2)

Here, the symbol “·” denotes a scalar product, τ and σ
stand for isospin and spin operators, respectively, r implies
the distance between two interacting nucleons, and fτσ is
a function of r. In the long-range (or no r-dependence)
limit of fτσ(r), the interaction in eq. (2) can couple only
a pair of orbits with the same orbital angular momentum
l, which are nothing but j> and j<.

The σ operator couples j> to j< (and vice versa) much
more strongly than j> to j> or j< to j<. Therefore, the
spin-flip process is more favored in the vertices in fig. 3(d).
The same mathematical mechanism works for isospin: the
τ operator favors charge exchange processes. Combining
these two properties, Vτσ produces large matrix elements
for the spin-flip isospin-flip processes: proton in j> → neu-
tron in j< and vice versa. This gives rise to the interaction

in fig. 3(c). This feature is a general one and is maintained
with fτσ(r) in eq. (2) with reasonable r-dependences.

Although Vτσ yields sizable attraction between a pro-
ton in j> and a neutron also in j>, the effect is weaker
than in the case of fig. 3(c).

In stable nuclei with N ∼ Z with ample occupancy of
the j> orbit in the valence shell, the proton (neutron) j<

orbit is lowered by neutrons (protons) in the j> orbit. In
exotic nuclei, this lowering can be absent, and then the
j< orbit is located rather high, not far from the upper
shell. In this sense, the proton-neutron j>-j< interaction
enlarges a gap between major shells for stable nuclei with
proper occupancy of relevant orbits.

The origin of the strongly attractive Vτσ is quite clear.
The One-Boson-Exchange-Potentials (OBEP) for π and ρ
mesons have this type of terms as major contributions.
While the OBEP is one of major parts of the effective
NN interaction, the effective NN interaction in nuclei can
be provided by the G-matrix calculation with core po-
larization corrections. Such effective NN interaction will
be called simply G-matrix interaction for brevity. The G-
matrix interaction should maintain the basic features of
meson exchange processes, and, in fact, existing G-matrix
interactions generally have quite large matrix elements for
the cases shown in fig. 3(c) [25].

We would like to point out that the 1/Nc expansion of
QCD by Kaplan and Manohar indicates that Vτσ is one of
three leading terms of the NN interaction [26]. Since the
next order of this expansion is smaller by a factor (1/Nc)2,
the leading terms should have rather distinct significance.

3.6 Disappearance of N = 20 magic structure: same
origin

We now turn to exotic nuclei with N ∼ 20. The ESPE has
been evaluated for them in [13]. Narrow effective gap for
neutrons between 0d3/2 and the pf -shell is obtained for
exotic neutron-rich nuclei with N ∼ 20 as can be seen in
fig. 1(b). Such a small gap is found to play an essential role
for various anomalous features. This small gap is nothing
but what we have seen for 24O in fig. 3(b). Thus, the dis-
appearance of N = 20 magic structure in Z = 9–14 exotic
nuclei and the appearance of the new magic structure in
24O have the same origin.

The Monte Carlo Shell Model has been applied to the
structure study of extremely neutron-rich unstable nuclei
around 32Mg [13]. Since the major issue is the breaking
of the N = 20 closed shell, one has to include both the
sd-shell and the pf -shell. In fact, because of narrower ef-
fective shell gap near Z = 10 as discussed above, intruder
configurations come down and are mixed with normal con-
figurations. The intruder configurations come down also
because they are more deformed and can gain more T = 0
correlation energies the large part of which is quadrupole
deformation energy. A large deformation can be expected
for Mg and Ne isotopes. These two mechanisms, narrower
gap and stronger deformation, are combined and produce
intriguing properties [13,27–29,3,30–33].
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3.7 Magic numbers in the p-shell: N = 6 vs. N = 8

A very similar mechanism works for p-shell nuclei. The
neutron 0p1/2 orbit becomes higher as the nucleus loses
protons in its spin-flip partner 0p3/2. The N = 8 magic
structure then disappears, and N = 6 becomes magic,
similarly to N = 16 magic number in the sd-shell. As a
consequence, 8He is well bound, whereas 9He is not bound.
This is analogous to the situation that 24O is well bound,
but 25O is unbound.

3.8 Heavier nuclei: N = 34, etc.

Moving back to heavier nuclei, from the strong interac-
tion in fig. 3(c), we can predict other magic numbers, for
instance, N = 34 associated with the 0f7/2-0f5/2 interac-
tion. In heavier nuclei, 0g7/2, 0h9/2, etc. are shifted upward
in neutron-rich exotic nuclei, disturbing the magic num-
bers N = 82, 126, etc. It is of interest how the r-process
of nucleosynthesis is affected by it.

3.9 Summary of the section

In summarizing this section, we showed how magic num-
bers are changed in nuclei far from the β-stability line:
N = 6, 16, 34, etc. can become magic numbers in neutron-
rich exotic nuclei, while usual magic numbers, N = 8, 20,
40, etc., may disappear. Since such changes occur as re-
sults of the nuclear force, there is isospin symmetry that
similar changes occur for the same Z values in mirror nu-
clei. The mechanism of this change can be explained by the
strong attractive Vτσ interaction which has robust origins
in OBEP, G-matrix and QCD. In fact, a simple structure
such as magic numbers should have a simple and sound
basis. Since it is unlikely that a mean central potential can
simulate most effects of Vτσ, we should treat Vτσ rather
explicitly. It is nice to build a bridge between the very ba-
sic feature of exotic nuclei and the basic theory of hadrons,
QCD. In existing Skyrme HF calculations, except for those
with Gogny force, effects of Vτσ may not be well enough
included, because the interaction is truncated to be of δ-
function type. The Relativistic Mean Field calculations
must include pion degrees of freedom to be consistent with
Vτσ. Thus, the importance of Vτσ opens new directions for
mean-field theories of nuclei. Loose-binding or continuum
effects are important in some exotic nuclei. By combin-
ing such effects with those discussed in this talk, one may
draw a more complete picture for the structure of exotic
nuclei. Finally, we would like to mention once more that
the Vτσ interaction should produce large, simple and ro-
bust effects on various properties, and may change the
landscape of nuclei far from the β-stability line in the nu-
clear chart.
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